ASYMPTOTIC SOLUTION OF THE PROBLEM OF OUTFLOW
OF HEAVY LAMINAR JETS OF NONMIXING LIQUIDS

V. I. Eliseev : UDC 532.536

The solution of problems concerned with the flow of heavy jets of ideal liquid is given in a number of
publications (see, for example, [1-3]). The paper [4] is devoted to the asymptotic behavior of viscous jets with-
out taking into account the surrounding medium and mass forces. Finally, viscous flows of nonmixing liquids
without mass forces are considered in [5], where an approximate solution for a plane jet is obtained by the in-
tegral method.

We shall consider the problem of outflow of a vertical laminar jet into a different medium which does not
mix with the outflowing liquid. The solution is carried out for the simplest formulation of this problem. We
assume that the jet, over the entire extent of its flow, does not break and remains laminar; in addition, we as-
sume that between the outflowing liquid and the medium there exists a smooth boundary (Fig. 1). As a con-
sequence of friction, the outflowing liquid draws into motion the external medium adjacent to the jet; as a re-
sult, an associated mass is formed. Neglecting the narrow diffusive layer, we shall assume that on the separa-
tion boundary the condition of equal velocities and shear and normal stresses is fulfilled. The flow diagram
adopted, although possessing a number of shortcomings, is nevertheless realized in practice. Thus, in the case
of flow of a jet of dense liquid in air, under certain conditions there exists a fairly large part of the jet on which
the separation boundary is a smooth surface.

An asymptotic method, allowing us to calculate the jet flow far from the source, is proposed for the solu-
tion of the problem formulated. Here the influence of the initial impulse and the initial velocity profile is not
taken into account. The approach proposed is analogous to the analysis of jets of mixing liquids issuing from
point sources [6]. ’

In the role of the basic equations we use a system of Navier —Stokes equations in the region 1, which we
call the internal region, and equations of the boundary layer in the region 2, which we call the external region.
Such a difference in the mathematical description of the regions can be explained by the fact that the flow in
region 1 constitutes in a certain way a flow in a channel with distorted walls. Therefore, here transverse pres-
sure gradients, commensurable with the longitudinal gradients, are possible. Tn the region 2, however, the
maghnitudes of transverse pressure gradients are considerably less than the longitudinal gradients.
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1. Plane Jet. We write out the basic equations: in the region 1

— du, ouy ~ apy ug 1 8 du
Uy —=+v 1= ——=L = (2 —
1%z + 1 dy P10z v1{6z2 + ys ay (ys ay )} &
vy vy apy 8% 3 ({1 dv -
Uy — Vy— = — 1 1 —f 2
13, T oy play"l‘w{axg + 3y (y“ ay)}. (1.1
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where s =0 for a plane problem and s =1 for an axisymmetric problem; in the region 2
Ou, du,  %u, duy | v,
Ug n +Uze—y -—’Vz-ag;, E;—i—a—y:().

To obtain the solutions we determine the first terms in the expansions of the stream functions. Let
Y1 ~ aUXTF(n), n ~ yX™/ay;
Yy ~ aUXRG(h), b ~ (g — apX-")/a,X>;
Py ~ —P8%, P2 > Py,
Vi

2
Uaj

where 3 is the stream function; X =4 z; A is a certain constant quantity; U is the velocity scale; a g is the
linear scale; and r, m, k and p are constant coefficients. From a condition of conservation of mass in the in-
ternal region we have r =0, For the finding of the remaining coefficients we have the following conditions: a)
the condition of conservation, in the equation for G in the external region, of the dynamic and viscous terms,
i.e., k+p=1; b) the condition of equality of the velocities on the separation boundary m =k ~p; ¢) the condition of

equality of the impulse increment of the associated mass % [ g uidy to the resulting force actingon the issuing
g

liquid (ps—p )Y+, where yx is the half-width of the internal region (yx~a X~ Iy The first condition points to

the equal importance of the viscous and dynamic terms in the external boundary layer. The last condition indi-

cates that the Archimedean force applied to the jet proper is transmitted through the free surface to the as-

sociated mass, increasing its impulse. From these three conditions we can find m=1/5, k=3/5, p=2/5. Thus,

we can seek the solutions in the regions 1 and 2 in the form

P, = aU[Fy(n) + X-15F () + ... 1, (1.2)
n = yXi5/(ay + a, X-15 4 @, X-25 + .. .);
Vo= agl X35[Go(h) 4 X~15G, (k) + . .. 1, (1.3)

h= y— X" (g4 o, X154 )
X5 (ay+ 0, X0 4 )

In the expressions (1.2) and (1.3), aj (j > 0) are corrective quantities. In order to avoid logarithmic
terms in the solutions, we have to put ¢, =0. In a contrary case, from the condition c) we see that the impulse
of the associated mass, in addition to the power terms, will have a logarithmic term.

The bouﬁdary'conditions on the axis of the jet and at infinity are given by the expressions
F;(0) =0, F;(0) =0, Gj(c0) =0.

On the separation boundary  =1) the conditions of equality of the velocities and the shear stresses for the
number of approximations considered are expressed in the form

G3 (0) = Fi (1), 6 (0) = vFirs (1), v = £ (14

Equations (1.4) are joining conditions of the solutions in the internal and external regioné. Substituting (1.2)
into Egs. (1.1), we obtain the following system:

Fy =0,F =0,F; =0,F; = —B, F, = — 3-;%3,
o | 9 4y | o
F; =—3(a_z- ;§->B,F5 =‘3(Z.;l+2 ;lg—ur

5 | dla,

_l_ﬁ B-[—LA F .—_—_3[%_!_2._*__ BLr 2% 4
ag 5 L] ? ka% az H *

z a-’g 5 a,
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2 —
where B = g;—s pzplpl'
1

Taking into account the fact that on the free surface
Fo(f) =1, Fi(1) =0 (j > 0),

and taking into consideration the boundary conditions on the axis of the jet, we can write the solution in the
form
Fy=n, Fy =0, F,=0, Fy = (B6)n(1 — %), Fy = 0, Fy = 0,
Fo = (1/6)(3(ay/a)B — (1/5)A)n(1 — n?), F, = 0. (1.5)

In the expressions (1.5) the solutions are written out, with the fact taken into account that @ ;=& 4=0. The last
equation follows from the analysis of the solutions in the internal and external regions.
In the region 2, having replaced
G; = Cgy(t), t = Dh,
where C= (u.A)'i/ 2, D= (%A)i/ 2 =y /v 4, We obtain the following equations and boundary conditions:

1, . "
g0 — (g — 3g.8) =0, (1.6)
g0 (0) =0, g (0) = 1, g5 (0) = 0, g (0) = — yD'B;
rr o ” 1 , 2 ”
g5 + 5 (&8s + 38.83) = + == (4 —3gu0), (L.7)
— - B ” : {4
2(0) = C7" g3 (0) = — 1 g3 (00) = 0, £ (0) = yD 1(?—3%3).

The boundary conditions just written out ensure the continuity of the stream functions, velocities, and shear
stresses on the separation boundary. In the expressions (1.6), (1.7) we have not written out the equations for
g1, 83 and g,, since the solutions of these equations aretrivial: g; =g,= g4 =(0. The solution of Eq. (1.6), found
numerically, is shown in Fig. 2. From the last boundary condition for go(o) we can find

— %-12B2/(0.594)2

The solution of Eq. (1.7) can be represented in the form

8 = ng;) + Dy - %z‘ &31-

Having determined numerically gg; for the boundary conditions (see Fig. 2),g5(0)=0,g '3(0) =0 and g's (9=
0, we find

C3 = 0.561 B, Dy = C'— C3, ayla, = —0.362(1/3 — »~Y?)B.

We now write out the impulse for the entire jet:

Ys
f paidy + pgugdy
0

llas

Substituting here the solutions just found, we have
I = pU%a, X3 [ {eyan + x5 ( (2G{,G; — Z—sG;f) dh] T pUPa X,
] 3 0
The magnitude of this impulse is equal to the resultant force acting on the outflowing liquid;
I = 0,B(UYA)a,[(5/4)X4/5 + 5(az/ag)X /5.
Having put B=1, from the condition of conservation of mass

x
G = 5 p1u,dy == const

we find U and a

2 _ 1/8 ¢ pes) ., 1—13
U:[g_G_Ps__P_l] ,%:__[g__uj _

vt P1
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The equation B=1 was assumed for the sake of simplicity, since the value of B (this can be easily shown) ex-
erts no influence on the values of the jet parameters.

We now evaluate the magnitude of pressure in the internal region. From the condition of equality of the
normal stresses on the separation boundary, without taking into account the capillary forces

145" oo,

2
1+ ye 00y 2T oo
2
1_'!/* o Y+

1"“?’: % y

— D1+ 2m = — DPp 1 2y, 1.8)

we can obtain
2‘ R _ 5
P1= _Pzgf‘l‘?,"’:—;‘(!h‘—}"z)AX i,
0 .

Using the solutions obtained, we write out the expressions for the velocities on the jet axis and the expressions
for the velocity and friction on the separation boundary:

/U = Xt5[1 + (1/6 — ag/ag)X—35]; (1.9)
wylU = XS — (113 + aglag) X—351;
Ty = —u(Ulag)X-1511 4 (aglay — A/5)X-3/5]. (1.10)

From the expressions (1.9) , (1.10) we see the difference between a jet in the case of viscous interaction between
it and the surrounding medium and a jet of ideal liquid, for which u/U~X1/2,

2. Axisymmetric Jet, In this case, to Eqs. (1.1) we add the equation of the boundary layer in the region
2: :

or \ Graz gy Or ) 8z ar® 2 a8’

m(m_ v, 64:2) 2y %y _ Py .1)
where y« is the separation surface; r =y—yy; and g4 is the stream function in the axisymmetric flow, i.e.,uy=
(Hy)dpslor, vg=- (1/y%) 9y, /8x. In contrast to the plane case, when considering problems in an axisymmetric
formulation we have to take into account the fact that Eq. (2.1) is valid when the thickness of the boundary layer
is considerably less than the radius of the internal region. After finding the solutions we can write the
limiting condition of applicability of the equation to be used and the solutions obtained below. Carrying outall
the reasoning of the preceding case, we can obtain the first terms of the expansions of the stream functions in
the internal and external regions. Not dwelling on the details, we write out at once the form of solutions inthe
first and second regions:

by =aU [F, () + X*F (n) + ...],
B yxi/s
T do, X VR ?
b, = aUX"*[G, (b) + X061y + ... ],

h= -
X (gy L a X8 )"

In order to eliminate the occurrence of logarithmic terms we must put 2a g+a§ /4 ,=0. The boundary con-
ditions on the axis of the jet and at infinity have the form

F;(0) =0, F;j(0) = 0, Gj(co)=0.
On the boundary separating the two liquids (n=1), within the framework of the number of approximations con-
sidered, the conditions
G (0) = Fi(1), 65(0) = [Fira(1) — Fira (1)]
are fulfilled. After substitution of the expansions into the system (1.1), we obtain equations in the internal re-
gion. Without writing them out, we at once give the solutions of these equations:
Fo= (1/2n?, Fy =0, F, =0, Fy =0,
F, = (B/16)r*(1. — n¥), Fy =0, Fy =0, F, =0,
Fg = (1/16)(4Bay/ay — A/%n* (1 — n?), Fy =0, Fyy = 0,

where a ;=ay=a3=a;=0. Taking into account the last equation, we write out the system of equations in the ex-
ternal region, having first replaced G;=Cgj(t), t =Dh, where C = (na)~1/2, D= (ma)/2, n= v, /v,
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s 1 2 "
g0 — 4 (g —28,40) = 0, @.2)

’ ’ ” 1 o
go(O) 20, g0 (0) = 17 go(ao) = 0, gO(O) — __T,VD lB;
ir 1 ,, 2 .
oty agi= k6, 2.9
1 - ., 1 ’
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8. (0) =—yD (—4——4723),

In the same way as in the preceding problem, the boundary conditions written out ensure the continuity of the
physical parameters indicated. In the expressions (2.2), (2.3) we do not write out the equations for gy, g,, g3, 855
and g,, since their solutions are zero. The solution of Eq. (2.2), found numerically, is shown in Pig. 3. Using '
it, we can find
A = n~W:BY4(0.587)%.

The function g, will be represented in the form of the sum of the solutions

8= C4g8 + D, + ;L: Bi1»
where g,y, shown in Fig. 3, was determined from the solution of the nonhomogeneous equation under the follow-

ing boundary conditions: g,;(0) =0, g'41 (0) =0, g'41 () =0. From the solution obtained and the appropriate boundary
conditions we shall determine the constants

C,=0213 B, D, = C~Y2 — C,, a,/a, = — 0.062(1/2 — % 'y?) B.
Having written out the integral expression for the impulse
Y %
1=\ pwuldy + | pwy,uddy
0 . Ys

and substituted here the solution thus obtained, we have

The magnitude of this impulse is equal to the resultant mass force, i.e.,
2

Uz aof 2 §] ¥
1=p82d (_3-X"/8 +4de x*).

Using the condition of conservation of the mass of the outflowing liquid

Y
G = g plyuldy = const
L]

and having put B=1, we obtain

. G py— 91]1/2 _ /f) _G_)UZ {2 G 0, —91]—1‘”’
U—[zg\flpl 01 " o k“ P1 g"’191 p1 - )

The evaluation of the magnitude of pressure here can also be carried out by means of the expression (1.8),
since the stresses corresponding to the axes x and y in the cylindrical coordinate system coincide in form with
the stresses in the plane problem [7]. After substitution of the solutions into (1.8) we have

1 v -
D= — P28+ T% (b — po) AXTS,
0

We shall now obtain a condition under which the use of Eq. (2.1) is valid. From Fig. 3 we see that for
t =8 the function g, praectically can be considered equal to zero. Taking at this point the quantity ry =
8D 1x3/8, o for the thickness of the boundary layer in the external jet, from the condition r« /y«<«1 we obtain
X«D?/64. Taking into account the asymptotic character of the solution, we obtain

1 << X < y%/88.2..
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We write out the expressions for the velocity on the axis of the jet:
Un/U = X28[1 + (1/8 — 2a,/a)X-4/8],
and also for the velocity and friction on the separation boundary:

u /U = X28[1 — (1/8 4 2a,/a)X-4/81,
Ty = —(Ulag) X—18(1/2)[4 + (ag/a, — A/G)X—48].

In the conclusion, we point out that for an outflow of a heavy liquid downward the solutions written out
will be valid for p;> p4and

- gV1U f1
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STABILIZATION OF SOLUTIONS OF TWO-DIMENSIONAL
EQUATIONS OF DYNAMICS OF AN IDEAL LIQUID

- G. V. Alekseev UDC 532.5 +517.9

Problems of solvability of initial- and boundary-value problems for two-dimensional nonstationary Euler
equations of dynamics of anidealliquid have been studied by many authors. A review andthe corresponding refer-
ences can be found, for example, in[1, 2]. However, the problem of asymptotic behavior of the solutions of the
Euler equation as t— < has not been investigated.

This is apparently explained by the fact that the corresponding boundary-value problems for a stationary
Euler equation do not possess the uniqueness property of the solution. In addition, examples exist where a
stationary boundary-value problem has a continuum of solutions, as, for example, the problem with the condi-
tion of no leakage of the liquid through the boundary of a region of flow. To obtain any results about the asymp-
totic behavior in the case of t —» of the solutions of nonstationary initial-value problems, we have to single
out a class in which the corresponding stationary problem has a unique solution (or a finite number of solutions).
One such class was introduced in [3]. The simplest representative of this class is motion without vortices. In
the present paper we present sufficient conditions under which the solutions of two-dimensional Euler equations
as t— o tend to a potential flow.
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