
A S Y M P T O T I C  S O L U T I O N  OF T H E  P R O B L E M  OF O U T F L O W  

O F  H E A V Y  L A M I N A R  J E T S  OF N O N M I X I N G  L I Q U I D S  

V. I .  E l i s e e v  UDC532.536 

The solution of p rob l ems  concerned  with the flow of heavy je ts  of ideal liquid is given in a number  of 
publicat ions (see, for  example ,  [1-3]). The paper  [4] is devoted to the asympto t ic  behavior  of v iscous  jets  with-  
out taking into account the surrounding med ium and m a s s  fo rces .  Finally,  v iscous  flows of nonmixing liquids 
without m a s s  f o r ce s  a r e  cons idered  in [5], where  an approx ima te  solution for  a plane jet  is obtained by the in- 
t eg r a l  method. 

We shal l  cons ider  the p rob l em  of outflow of a ve r t i c a l  l amina r  jet  into a different  med ium which does not 
mix  with the outflowing liquid. The solution is c a r r i e d  out for  the s imples t  formula t ion  of this p roblem.  We 
a s s u m e  that the jet ,  ove r  the ent i re  extent of its flow, does not b r e a k  and r e m a i n s  l aminar ;  in addition, we a s -  
sume  that between the oufflowing liquid and the med ium the re  ex is t s  a smooth  boundary (Fig. 1). As a con-  
sequence of f r ic t ion,  the outflowing liquid draws into motion the ex te rna l  medium adjacent  to the jet; as  a r e -  
sult ,  an a s soc ia t ed  m a s s  is fo rmed.  Neglect ing the n a r r o w  diffusive l aye r ,  we shal l  a s s u m e  that  on the s e p a r a -  
tion boundary  the condition of equal veloci t ies  and shea r  and n o r m a l  s t r e s s e s  is fulfilled. The flow d i ag ram 
adopted, although pos se s s ing  a number  of shortcomings~ is neve r the l e s s  r ea l i zed  in prac t ice .  Thus,  in the case  
of flow of a jet  of dense liquid in a i r ,  under ce r ta in  conditions the re  exis ts  a f a i r ly  l a rge  par t  of the jet  on which 
the separa t ion  boundary is a smooth  sur face .  

An asympto t ic  method,  allowing us to ca lcula te  the jet  flow far  f r o m  the source ,  is proposed for  the so lu-  
tion of the p r o b l e m  formula ted .  He re  the influence of t h e  initial impulse  and the initial veloci ty  prof i le  is not 
taken into account.  The approach  proposed  is analogous to the analys is  of je t s  of mixing liquids issuing f r o m  
point sources  [61. 

In the ro le  of the bas ic  equations we use a s y s t e m  of Navier  - S t o k e s  equations in the region 1, which we 
ca l l  the internal  region,  and equations of the boundary l ayer  in the region 2, which we call  the externa l  region.  
Such a d i f ference  in the ma thema t i ca l  descr ip t ion  of the reg ions  can be explained by  the fact  that the flow in 
region 1 const i tu tes  in a ce r ta in  way a flow in a channel with d is tor ted  walls .  The re fo re ,  he re  t r a n s v e r s e  p r e s -  
su re  grad ien ts ,  c o m m e n s u r a b l e  with the longitudinal grad ien ts ,  axe possible .  In the region 2, however ,  the 
magnitudes of t r a n s v e r s e  p r e s s u r e  gradients  a r e  cons iderab ly  l ess  than the longitudinal gradients .  
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1. Plane Jet .  We wr i te  out the bas ic  equations:  in the r eg ion  1 

::-  ~ u~ ~~ "-r v~ Ou,~_u : - -  plozOP' + v , ( ~ .  + 7_~_u ~y __~u ]~ _ g , i  o /  ~Ou,,~ 

u~ ~ -t- v~ ~u = p~ou - ou \ u* oy )1' 

OySux OYSvl ~ O, 
oz + ay 

where  s =0 for  a plane p r o b l e m  and s =1 for  an a x i s y m m e t r i c  p rob lem;  in the reg ion  2 

u~-~- + v~-y~u = ~'~VU' - ~  + ~  = 0 .  

To o b t a i n t h e  solutions we de te rmine  the f i r s t  t e r m s  in the expansions of the s t r e a m  functions.  

~ N agJXrF(n ) ,  n ~ yXm/ao; 

~ ,-. a~gXk6(h) ,  h ~ (y - -  aoX-") /aoX, ' ;  

Let 

( i .1)  

where  r is the s t r e a m  function; X = A ua---~- x; A is a ce r t a in  constant  quantity; U is the veloci ty  sca le ;  a 0 is the 

l inear  sca le ;  and r ,  m,  k and p a r e  constant  coeff ic ients .  F r o m  a condition of conserva t ion  of m a s s  in the in- 
t e rna l  reg ion  we have r =0. For  the f'mding of the r ema in ing  coeff ic ients  we have the following condit ions:  a) 
the condition of conservat ion ,  in the equation for  G in the externa l  region,  of the dynamic and viscous  t e r m s ,  
i .e . ,  k + p = l ;  b) the condition of equali ty of the veloci t ies  on the separa t ion  boundary  r e = k - p ;  c) the condition of 

to equali ty of the impulse  increment  of  the assoc ia ted  m a s s  -~x P2 the r e su l t ing  fo rce  ac t ingon the  issuing 
y* 

liquid (p 2 -  P 1)gY*, whe re  y ,  i s  the h~lf-width of the in ternal  reg ion  (y.  ~ a 0 x -  m). The f i r s t  condition points to 
the equal impor tance  of the viscous  and dynamic t e r m s  in the ex te rna l  boundary  l a y e r .  The las t  condition indi- 
ca tes  that the Arch imedean  fo rce  applied to the jet  p rope r  is t r ansmi t t ed  through the f r ee  su r face  to the a s -  
socia ted  m a s s ,  inc reas ing  its impulse .  F r o m  these  th ree  conditions we can find r e = l / 5 ,  k = 3 / 5 ,  p = 2 / 5 .  Thus,  
we can seek  the solutions in the regions  1 and 2 in the f o r m  

~1 = aoU[Fo(n) + X-i /5Fa(n)  + �9 �9 �9 ], (1.2) 
n = yXl/5/(ao + alX-~/5 + a2X-2/5 + . . . ); 

~ =  aoU X 3/5 [Go(h) + X-i/SGx(h) 3- �9 �9 �9 1, (1.3) 

h = y - -  X - 1 / 5  (so + s ~ X - i / ~ + . . . )  
X 2/5 (no + s i X  -1/5 -~ . . . )  " 

in the express ions  (1.2) and (1.3), a j  (i > 0) a r e  c o r r e c t i v e  quanti t ies.  In o r d e r  to avoid logar i thmic  
t e r m s  in the solut ions,  we have to put a 4 =0. In a c o n t r a r y  case ,  f r o m  the condition c) we see  that the impulse  
of the assoc ia ted  m a s s ,  in addition to the power t e r m s ,  will have a logar i thmic  t e r m .  

The boundary conditions on the axis  of the jet  and at infinity a r e  given by  the express ions  

r j  (0) = 0, F~ (0) = 0, G~ ( ~ )  = 0. 

On the separa t ion  boundary (n =1) the conditions of equali ty of the ve loci t ies  and the shear  s t r e s s e s  for  the 
number  of approx imat ions  cons idered  a r e  e x p r e s s e d  in the f o r m  

~1 (1.4) Gj (0) = F~ (i), G~ (0) ~ 7FJ+~ (i), 7 = ~"~. 

Equations (1.4) a r e  joining conditions of the solutions in the internal  and ex te rna l  reg ions .  Substituting (1.2) 
into Eqs. (1.1), we obtain the following sys t em:  

F~" = 0, F~" - -  0, , ~ "  = 0, F~" = B,  F~" - -  - -  3 ,,1 B,  
go 

(o,L ('s, F;"= 3~so " a 2 ] B ' F ~ ' ' = - 3  ~- a2 + 

+~o y A ,  X,= 3~'-~o~-,,~-- a3o ] ' 5 ao 
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a 2 P.z--P~. Taking  into account  the fact  that  on the f ree  su r f ace  w h e r e  B = g y ~ -  
Pl 

Fo(~) = l ,  Fj ( t )  = o (j > o), 

and taking into c o n s i d e r a t i o n  the  b o u n d a r y  condi t ions  on the axis  of  the je t ,  we can  wr i t e  the solut ion in the 
f o r m  

F 0 = n ,  F 1  = 0 ,  . $ ' 2 = 0 ,  F a = (B l6 )n ( t  - -  n2), F a  ----- 0 ,  F 5  = 0 ,  

F6 = (t16)(3(a3/ao)B " (tl5)A)n(t - -  n2), F 7 : 0. (1.5) 

In the e x p r e s s i o n s  (1.5) the solut ions  a r e  wr i t t en  out,  wi th  the fac t  taken  into account  that  a 1 = a  2=0. The  las t  
equat ion fol lows f r o m  the a n a l y s i s  of  the solut ions  in the  in terna l  and ex te rna l  r eg ions .  

In the r e g i o n  2, having  r e p l a c e d  

Gj = Cg~(t), t = Dh,  

w h e r e  C = ( h A )  -1 /2 ,  D = (cA)l/2;  ~ =  v 1 / t , 2 ,  we obtain the  fo l lowing equat ions  and bounda ry  condi t ions :  

g ~ " -  -g-(go - 3 g d )  = o, (1.6) 

go (0) = O, go (0) = l, go (oo) = O, go (0) = - -  ~tD- iB;  
, , '  t t a s ,~ 

g3 + - ~  (g0g~ ,-}- 3g0g~) = (4g0 --3g0g0), (1.7) Y W  

C - l ,  g~ B g~ g~ f A  \ 

The  b o u n d a r y  condi t ions  jus t  wr i t t en  out e n s u r e  the  cont inui ty  o f  the s t r e a m  funct ions ,  ve loc i t i e s ,  and s h e a r  
s t r e s s e s  on the s e p a r a t i o n  boundary .  In the e x p r e s s i o n s  (1.6), (1.7) we have not wr i t t en  out the equat ions  fo r  
gl, g2 and g4, s ince  the so lu t ions  of  t he se  equat ions  a r e t r i v i a h  gl =g2=g4=0 .  The  solut ion of  Eq. (1.6), found 

. . M o n u m e r i c a l l y ,  is shown in Fig.  2. F r o m  the las t  bounda ry  condi t ion fo r  g0(0) we can  fred 

A = • 2. 

The  solut ion o f  Eq. (1.7) can  be  r e p r e s e n t e d  in the  f o r m  

G3 
g3 = C3g'o 21- D3 + -~o g3i" 

Having d e t e r m i n e d  n u m e r i c a l l y  gs~ for  the bounda ry  condi t ions  (see Fig.  2), g31(0) = 0, g'31(0) -- 0 and g'31(~)= 
0, we f ind 

C 3 = 0.561 B ,  D 3 = C - i - -  C3, a3/ao = --0.362(1/3 - -  z-l?2)B. 

We now w r i t e  out the impulse  fo r  the en t i r e  je t :  

y~ Co 

0 y~ 

Subst i tut ing h e r e  the solut ions  just  found, we have 

[i i( )} ii  3 ,2 I = p2U2aoX 4/5 " -t- Go dh 4- X -sIS ,, 2GoG'3 - -  "~o Go dh ptU2ao Xtls .  

The magni tude  of this  impu l se  is equal  to the r e s u l t a n t  f o r c e  ac t ing  on the  outf lowing l iquid:  

I -~ pIB(U2/A)ao[(5i4)X~I5 -4- 5(aalao)XU5 ]. 

Having put B = I ,  f r o m  the condi t ion of  c o n s e r v a t i o n  of  m a s s  

Y~ 

G = .t" Pluldg = const 
0 

we find U and a 0: 

G ~ p~ - -p t ]  iI3 G [ a  (7 ~ p2--pt-I - t /3 
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The equation B = I  was a s s um ed  for  the sake  of s impl ic i ty ,  s ince  the value of B (this can be eas i ly  shown) ex-  
e r t s  no influence on the values  of the jet  p a r a m e t e r s .  

We now evaluate  the magnitude of p r e s s u r e  in the internal  region.  F r o m  the condition of equali ty of the 
n o r m a l  s t r e s s e s  on the separa t ion  boundary,  without taking into account  the cap i l l a ry  fo rces  

we can obtain 

- -  y+ #Y iV. 

J 

Pl = - -  p~gx --[- --if- "~o (Ix1 - -  p+z) AX-4/5"  

(1.8) 

Using the solutions obtained,  we wr i te  out the express ions  for  the veloci t ies  on the jet  axis and the express ions  
for  the veloci ty  and f r ic t ion  on the sepa ra t ion  boundary:  

um/U = X t/5 [t + (1/6 ~ aa/ao)X -3/~ ]; (1.9) 
u , / U  = X~/511 ~ (t/3 + aJa0)X-~/5]; 

~,  ----- - -~ l (U/ao)X -i/5 [t + (aJao - -  A / 5 ) X -  3/s ]. (1.10) 

F r o m  the expres s ions  (1.9) , (1.10) we see  the d i f ference  betwee~ a jet  in the c a s e  of v iscous  in terae t ionbetween 
it and the surrounding medium and a je t  of ideal liquid, for  which u /U ~X1/2.  

2. A x i s y m m e t r i c  Je t .  In this case ,  to Eqs. (1.1) we add the equation of the boundary l ayer  in the region 
2: 

Or \ OrOx v,  ~r / Oz Or ~ = ~"~-r3' (2.1) 

where  y ,  is the separa t ion  sur face ;  r = y - y . ;  and r is the s t r e a m  function in the a x i s y m m e t r i c  flow, i .e. ,  u2= 
( t /y , )O%/Or,  v 2 = - ( l / y , ) 0 r  2/gx. In con t ra s t  to the plane case ,  when cons ider ing  p rob l ems  in an a x i s y m m e t r i c  
formula t ion  we have to take into account  the fact  that Eq. (2.1) is valid when the th ickness  of the boundary layer  
is cons iderab ly  l ess  th_~n the rad ius  of the in ternal  region.  Af ter  finding the solutions we can wri te  the 
l imit ing condition of appl icabi l i ty  of the equation to be used and the solutions obtained below. Ca r ry in g  out a l l  
the reason ing  of the p reced ing  case ,  we can obtain the f i r s t  t e r m s  of the expansions of the s t r e a m  functions in 
the internal  and ex te rna l  reg ions .  Not dwelling on the deta i ls ,  we wr i te  out at once the f o r m  of solutions inthe 
f i r s t  and second reg ions :  

,1 = a~u iF0 (~)+ X-~/+F~(~) + . . .  ]. 
yXi /8  

n -~ ao + a ~ X _ i / s  + . . . ,  

, ~  = a2oUXl/"[Oo (h) + X-- l /Sax  (h) + . . .  ], 

h =  r 
z ~/s (ao + a~Z - t /8  + . . . )  " 

In o r d e r  to e l iminate  the o c c u r r e n c e  of logar i thmic  t e r m s  we must  put 2 a o + a ~ / a o = O .  The boundary  con- 
ditions on the axis  of the je t  and at  infinity have the f o r m  

F~ (0) = O, Fj (0) = O, a~ ( ~ )  = O. 

C~ the boundary  sepa ra t ing  the two liquids (n = ! ) ,  within the f r a m e w o r k  of the number  of approx imat ions  con-  
s idered ,  the conditions 

a; (0) = F; 0 ) ,  G; (0) = v iF;. , .  (t) - -  6 + ~  (t)1 

a r e  fulfilled. After  subst i tut ion of the expansions into the s y s t e m  (1.1), we obtain equations in the internal  r e -  
gion. Without wri t ing t hem out, we at  once give the solutions of these  equations:  

Y o ~ (t/2)n 2, F I = 0 ,  Y.~ = 0 ,  Y s = O ,  
F4 = ( B / 1 6 ) n 2 ( l - -  n2), F5 = O, Fo = O, F 7 = O, 

Fs = ( t /16)(4BaJao - -  A/4)n2(t  --. n~), F~ -~ O, /'io = O, 

where  a l = a 2 = a 3 = a s = O .  Taking into account the las t  equation, we wr i t e  out the s y s t e m  of equations in the ex-  
t e rna l  region,  having f i r s t  r ep laced  Gj =Cgj(t),  t =Dh, where  C = (~A) -1/2, D= (xA) i/2, x =  v / v 2 :  
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go"  - -  t ,~" - v  (go - 2 g o t ; )  = o, 

t --1 
g0(0) = 0, go (0) = t, g'0 (~c) = 0, g0(0) = ---~- 7D B; 

g~, + t ,, ~, ,~ 

--if- gog~ = -~o go, 
i t 

ga (0) -- y C - i ,  gi (0) = --  "-4 B, gl ( ~ )  = O, 

= t 

(2.2) 

(2.3) 

In the same  way as in the preceding problem, the boundary conditions wr i t ten  out ensure the continuity of the 
physical  pa ramete r s  indicated. In the expressions (2.2), (2.3) we do not wri te  out the equations for gl,g2,g3, gs,:. 
and g6, since their solutions a re  zero.  The solution of Eq. (2.2), found numerica l ly ,  is shown in Fig. 3. Using 
it, we can find 

A = ~-172BV4(0.587)2. 

The function g4 will be represen ted  in the fo rm of the sum of the solutions 
t t/4 

g4 = C4g0 + D4 + ~ g4i, 

where g4i, shown in Fig. 3, was determined f rom the solution of the nonhomogeneous equation under the follow- 
ing boundary conditions: g4t(0) =0, ~4t(0) =0, g'41(oo) =0. F r o m  the solution obtained and the appropria te  boundary 
conditions we shall  determine the constants 

6' 4 = 0.2t3 B, D a = C-t12 --  Ca, a4/a o = -- 0.062 (t/2 --  z-~72) B, 

Having writ ten out the integral  expression for the impulse 

Y2 o~ 

= .  9iYuldY + p2y,u2dy 
0 y,~ 

and substituted here the solution thus obtained, we have 

/ i :  ;( " 0)} I := R~a~U~X 6Is . G dh + X -~/s 2G~G):- ~ G dh q. t__ oia~U'~X 2Is. 
' 2 

The magnitude of this impulse is equal to the resul tant  mass  force ,  i.e., 

u s o (2  X2/S) I = p x B . - - ~ a ~  -5- Xe'/s + 4 -~  

Using the condition of conservat ion of the mass  of the outflowing liquid 

Y* 

G = .t pxyuldy = C o n s t  

o 

and having put B = 1, we obtain 

_ = 1 U - - [ - ~ p ~  p~ j , ao --~-/ k2g 
VlPl ~i .J " 

The evaluation of the magnitude of p r e s s u r e  here  can also be ca r r i ed  out by means of the expression (1.8), 
s ince the s t r e s s e s  corresponding to the axes x and y in the cyl indrical  coordinate s y s t e m  coincide in f o r m  with 
the s t r e s s e s  in the plane problem [7]. After substitution of the solutions into (1.8) we have 

1 ;71 
Pz = --  p.,gx + -~- 6 7 (lix --  P2) AX--6/s. 

We shall now obtain a condition under which the use of Eq. (2.1) is valid. F r o m  Fig. 3 we see that for 
t 

t =8 the function go prac t ica l ly  can be considered equal to zero.  Taking at this point the quantity r .  = 
8D-IX3/Sa 0 for  the thickness of the boundary layer  in the external jet, f rom the condition r , / y , < < l  we obtain 
X<<D2/64. Taking into account the asymptot ic  charac te r  of the solution, we obtain 

i ~ X << 7V88.2.. 
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We wri te  out the express ions  for  the veloci ty  on the axis  of the jet:  

u , / U  = X2/S [1 + (t/8 - -  2a~lao)X-4/s], 

and also  for  the ve loc i ty  and f r ic t ion  on the separa t ion  boundary:  

u . / U  = X2/8[1 - -  (1/8 + 2a4/ao)X-4/Sl, 

"r. = - - 9 l ( U / a o ) X - t / s ( l / 2 )  [l + (aJao - -  A / 4 ) X - 4 / 8  ]. 

In the conclusion,  we point out that  for  an outflow of a heavy liquid downward the solutions wr i t ten  out 
will be valid for  Pl  > P~- and 

B = g  a~ PI~P,, 
~ I  U D1 " " 
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S T A B I L I Z A T I O N  OF S O L U T I O N S  O F  T W O - D I M E N S I O N A L  

E Q U A T I O N S  O F  D Y N A M I C S  O F  AN I D E A L  L I Q U I D  

G.  V.  A l e k s e e v  UDC 532.5 +517.9 

P rob lems  of solvabi l i ty  of  in i t ia l -  and boundary-va lue  p rob l ems  for  two-dimens iona l  nonsta t ionary Eu le r  
equations of dynamics  of an ideal liquid have been studied by many  authors .  A rev iew and the cor responding  r e f e r -  
ences  can be found, for example ,  in [1, 2]. However,  the p rob lem of asympto t ic  behavior  of the solutions of the 
Eu le r  equation as  t ~  co has  not been invest igated.  

This  is apparen t ly  explained by the fact  that the cor responding  boundary-va lue  p rob l ems  for a s t a t ionary  
Euler  equation do not pos s e s s  the uniqueness p rope r ty  of the solution. In addition, examples  exist  where  a 
s t a t ionary  boundary-va lue  p rob lem has a continuum of solut ions,  as ,  for  example ,  the p rob lem with the condi-  
tion of no leakage of the liquid through the boundary of a region of flow. To obtain any r e su l t s  about the a s y m p -  
totic behavior  in the case  of t--.~o of the solut ions of nons ta t ionary  in i t ia l -value  p rob lems ,  we have to single 
out a c lass  in which the co r respond ing  s t a t ionary  p rob l em has a unique solution (or a finite number  of solutions). 
One such c lass  was introduced in [3]. The s imp le s t  r e p r e s e n t a t i v e  of this c l a s s  is motion without vor t i ces .  In 
the p re sen t  paper  we p resen t  sufficient  conditions under which the solutions of two-dimens ional  Euler  equations 
as t- ,-  co tend to a potential  flow. 
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